Reactive direction control for a mobile robot: a locust-like control of escape direction emerges when a bilateral pair of model locust visual neurons are integrated
نویسندگان
چکیده
Locusts possess a bilateral pair of uniquely identifiable visual neurons that respond vigorously to the image of an approaching object. These neurons are called the lobula giant movement detectors (LGMDs). The locust LGMDs have been extensively studied and this has lead to the development of an LGMD model for use as an artificial collision detector in robotic applications. To date, robots have been equipped with only a single, central artificial LGMD sensor, and this triggers a non-directional stop or rotation when a potentially colliding object is detected. Clearly, for a robot to behave autonomously, it must react differently to stimuli approaching from different directions. In this study, we implement a bilateral pair of LGMD models in Khepera robots equipped with normal and panoramic cameras. We integrate the responses of these LGMD models using methodologies inspired by research on escape direction control in cockroaches. Using ‘randomised winner-take-all’ or ‘steering wheel’ algorithms for LGMD model integration, the khepera robots could escape an approaching threat in real time and with a similar distribution of escape directions as real locusts. We also found that by optimising these algorithms, we could use them to integrate the left and right DCMD responses of real jumping locusts offline and reproduce the actual escape directions that the locusts took in a particular trial. Our results significantly advance the development of an artificial collision detection and evasion system based on the locust LGMD by allowing it reactive control over robot behaviour. The success of this approach may also indicate some important areas to be pursued in future biological research.
منابع مشابه
Relationship between Moroccan locust (Dociostaurus maroccanus) population densities and rangeland plant properties in Golestan province (Case study: Qaraqar-Bozorg rangelands)
The Moroccan locust (Dociostaurus maroccanus Thunberg) is one of the most important species of locusts in Iran and many parts of the world, which causes great damage to pastures and agricultural products every year. Since a main part of the life cycle of this insect is spent in pastures, recognizing the relationship between locusts and plant properties are important in the rangeland management ...
متن کاملTrajectory Tracking Weeled Mobile Robot Using Backstepping Method with Connection off Axle Trailer
The connection of the tractor to the inactive trailer or motor vehicle causes a motion control problem when turning in the screw, forward or backward movements and high speeds. This is due to the inactive trailer being controlled by the tracking using a physical link that is not affected by the movement. Trailers usually take tracks under these conditions. This phenomenon is called Jack Knife. ...
متن کاملControl of a Robotic Wheel-Chair Prototype for People with Walking Disabilities
In this paper we present a system that could be used to help people with walking disabilities. A system consists of a prototype mobile robot platform equipped with a control board and a remote computer system, running with image processing algorithms, was used to develop a system for physically disabled human to move freely in an environment. We used a camera to get visual information by a huma...
متن کاملRetinally-generated saccadic suppression of a locust looming-detector neuron: investigations using a robot locust.
A fundamental task performed by many visual systems is to distinguish apparent motion caused by eye movements from real motion occurring within the environment. During saccadic eye movements, this task is achieved by inhibitory signals of central and retinal origin that suppress the output of motion-detecting neurons. To investigate the retinally-generated component of this suppression, we used...
متن کاملExperimental Analysis for Measuring Errors in Wheeled Mobile Robots (RESEARCH NOTE)
This paper presents experimental analysis of wheeled mobile robots. Mathematical modelling of the mobile robot is presented. The mobile robots consist of an omni-directional and three differential drive mobile robots are tested and moved in given trajectories and the systematic errors of the robots are determined. A new method for omni-direction mobile robot was introduced in which the robot wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Auton. Robots
دوره 28 شماره
صفحات -
تاریخ انتشار 2010